China wholesaler Hydraulic Breaker Spare Parts Cylinder for Furukawa with Best Sales

Product Description

****OUR FACTORY

***we are a factory in HangZhou city,ZheJiang province,China

specialized in manufacturing hydraulic breaker ,quick hitch ,ripper ,etc for excavator attachment .

OUR FACTORY IN HangZhou CITY,ZheJiang PROVINCE ,CHINA
OUR PRODUCT SPECAILIZED IN MANUFACTURE HYDRAULIC HAMMER
MOQ 1 SET
OEM YES.BECAUSE WE ARE A FACTORY
COLOR ANY COLOR COULD DO FOR YOU
PAYMENT 30% DEPOSIT ,BALANCE BEFORE SHIPPING ,T/T OR L/C
DELIVERY DATE 1-50 SET 1-25DAYS.
SHIPPING BY SEA O BY AIR

 

* HangZhou Factory Direct Price
* Small order is welcome, MOQ 1 set
* Nice quality, 1 year warranty
* Chisel diameter from 35-210mm
* Breaker suit any brand 0.5-70 ton excavator
* Fit to machine as below:

YTCT HYDRAULIC BREAKER HAMMER:

MODE NUMBER CHISEL DIAMETER SUIT EXCAVATOR (WEIGHT) BRAND OF EXCAVATOR HYDRAULIC OIL FLOW HYDRAULIC PRESSURE BLOW FREQUENCY MAIN BODY WEIGHT HOSE DIAMETER ACCUMALATOR PRESSURE
YTCT MM TON   L/MIN KG/CM2 BMP KG INCH KG/CM2
YTCT 35 0.5-0.8 ANY BRAND 10–20 90-120 800-1400 40 1/2 /
YTCT10 40 0.8-2.5 15-25 90-120 800-1400 53 1/2 /
YTCT20 45 1.2-3.0 20-30 90-120 700-1200 71 1/2 /
YTCT30 53 2.5-4.5 25-50 90-120 600-1100 89 1/2 /
YTCT40 68 4–7 40-70 110-140 500-900 156 1/2 /
YTCT43 75 6–9 50-90 120-150 400-800 214 1/2 /
YTCT45 85 7–14 60-100 130-160 400-800 282 1/2 /
YTCT50 100 10–15 80-110 150-170 350-700 479 3/4 /
YTCT70 135 16-25 130-150 160-180 400-800 850 1 /
YTCT81 140 18-26 120-180 160-180 350-500 920 1 /
YTCT81A 140 18-26 120-180 160-180 350-500 956 1 60
YTCT100 150 27-35 150-190 160-180 350-700 2218 1 60
YTCT121 155 28-35 180-240 160-180 300-450 2577 1 60
YTCT131 165 30-40 200-260 160-180 250-400 1442 1 60
YTCT140 165 30-40 200-270 160-180 250-380 1590 1 60
YTCT151 175 35-40 210-290 160-180 200-350 1925 5/4 60
YTCT151L 175 35-45 220-270 200-240 200-300 1933 5/4 60
YTCT185 185 40-55 220-270 180-220 250-320 2295 5/4 60
YTCT190 190 45-60 220-290 180-220 180-200 2526 5/4 60
YTCT195 195 45-60 220-290 180-220 180-200 2600 5/4 60

ALL THE PRICE WITH SPARE PARTS AS BELOW:

1.all the price with wooden box pacakage .
2.all the price with the standard spare parts.
** —–2 chisels
** —–2 oil tube
** —–1 N2 gas bottle.
** —–1 tool box
** —–1 N2 pressure gauge

PACKING AND SHIPPING

1.Inner is stretch film, outside is export plywood case or as customer’s request

2.Delivery time:Usually 3-7days (1-5sets) after down payment.

3..We can arrange CHINAMFG or air transportation according to your request from any port of China.

HOW TO CHOOSE OUR BREAKER ?

1. PLEASE LET US KNOW YOUR EXCAVATOR MODEL NUMBER OR WEIGHT OF MACHINE.

2.PLEASE LET US KNOW WHAT COLOR DO YOU NEED FOR BREAKER .

3.PLEASE CHECK THE ABCDE SIZE FOR US ,ARM EAR WIDTH ,PIN DIAMETER AND PIN CENTER TO PIN CENTER SIZE .

4.CHOOSE WHAT TYPE OF HYDRAULIC BREAKRE DO YOU NEED ,THANKS.

NEED FREE CATALOG OR MORE PRICE,SEND ME INQUIRY AS BELOW.

MISS EVA WILL REPLY SOON,THANKS.

 

Type: Hydraulic Breaker
Application: Excavator
Certification: CE
Condition: New
Body Weight Incl.Chisel: 71kg
Total Weight: 95kg
Customization:
Available

|

hydraulic cylinder

Can hydraulic cylinders be integrated with advanced control systems and automation?

Yes, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and overall performance. The integration of hydraulic cylinders with advanced control systems allows for more sophisticated and precise control over their operation, enabling automation and intelligent control. Here’s a detailed explanation of how hydraulic cylinders can be integrated with advanced control systems and automation:

1. Electronic Control:

– Hydraulic cylinders can be equipped with electronic sensors and transducers to provide real-time feedback on their position, force, pressure, or velocity. These sensors can be integrated with advanced control systems, such as programmable logic controllers (PLCs) or distributed control systems (DCS), to monitor and control the operation of hydraulic cylinders. By integrating electronic control, the position, speed, and force of hydraulic cylinders can be precisely monitored and adjusted, allowing for more accurate and automated control.

2. Closed-Loop Control:

– Closed-loop control systems use feedback from sensors to continuously monitor and adjust the operation of hydraulic cylinders. By integrating hydraulic cylinders with closed-loop control systems, precise control over position, velocity, and force can be achieved. Closed-loop control enables the system to automatically compensate for variations, external disturbances, or changes in operating conditions, ensuring accurate and consistent performance. This integration is particularly beneficial in applications that require precise positioning, synchronization, or force control.

3. Proportional and Servo Control:

– Hydraulic cylinders can be integrated with proportional and servo control systems to achieve finer control over their operation. Proportional control systems use proportional valves to regulate the flow and pressure of hydraulic fluid, allowing for precise adjustment of cylinder speed and force. Servo control systems, on the other hand, combine feedback sensors, high-performance valves, and advanced control algorithms to achieve extremely precise control over hydraulic cylinders. Proportional and servo control integration enhances the responsiveness, accuracy, and dynamic performance of hydraulic cylinders.

4. Human-Machine Interface (HMI):

– Hydraulic cylinders integrated with advanced control systems can be operated and monitored through human-machine interface (HMI) devices. HMIs provide a graphical user interface that allows operators to interact with the control system, monitor cylinder performance, and adjust parameters. HMIs enable operators to set desired positions, forces, or velocities, and visualize the real-time feedback from sensors. This integration simplifies the operation and monitoring of hydraulic cylinders, making them more user-friendly and facilitating seamless integration into automated systems.

5. Communication and Networking:

– Hydraulic cylinders can be integrated into communication and networking systems, enabling them to be part of a larger automated system. Integration with industrial communication protocols, such as Ethernet/IP, Profibus, or Modbus, allows for seamless information exchange between the hydraulic cylinders and other system components. This integration enables centralized control, data logging, remote monitoring, and coordination with other automated processes. Communication and networking integration enhance the overall efficiency, coordination, and integration of hydraulic cylinders within complex automation systems.

6. Automation and Sequential Control:

– By integrating hydraulic cylinders with advanced control systems, they can be seamlessly incorporated into automated processes and sequential control operations. The control system can execute predefined sequences or programmed logic to control the operation of hydraulic cylinders based on specific conditions, inputs, or timing. This integration enables the automation of complex tasks, such as material handling, assembly operations, or repetitive motions. Hydraulic cylinders can be synchronized with other actuators, sensors, or devices, allowing for coordinated and automated operation in various industrial applications.

7. Predictive Maintenance and Condition Monitoring:

– Advanced control systems can also enable predictive maintenance and condition monitoring for hydraulic cylinders. By integrating sensors and monitoring capabilities, the control system can continuously monitor the performance, health, and condition of hydraulic cylinders. This integration allows for the detection of abnormalities, wear, or potential failures in real-time. Predictive maintenance strategies can be implemented based on the collected data, optimizing maintenance schedules, reducing downtime, and enhancing the overall reliability of hydraulic systems.

In summary, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and performance. The integration allows for electronic control, closed-loop control, proportional and servo control, human-machine interface (HMI) interaction, communication and networking, automation and sequential control, as well as predictive maintenance and condition monitoring. These integrations enable more precise control, automation, improved efficiency, and optimized performance of hydraulic cylinders in various industrial applications.

hydraulic cylinder

Handling Challenges of Different Fluid Viscosities in Hydraulic Cylinders

Hydraulic cylinders are designed to handle the challenges associated with different fluid viscosities. The viscosity of hydraulic fluid can vary based on temperature, type of fluid used, and other factors. Hydraulic systems need to accommodate these variations to ensure optimal performance and efficiency. Let’s explore how hydraulic cylinders handle the challenges of different fluid viscosities:

  1. Fluid Selection: Hydraulic cylinders are designed to work with a range of hydraulic fluids, each with its specific viscosity characteristics. The selection of an appropriate fluid with the desired viscosity is crucial to ensure optimal performance. Manufacturers provide guidelines regarding the recommended viscosity range for specific hydraulic systems and cylinders. By choosing the right fluid, hydraulic cylinders can effectively handle the challenges posed by different fluid viscosities.
  2. Viscosity Compensation: Hydraulic systems often incorporate features to compensate for variations in fluid viscosity. For example, some hydraulic systems utilize pressure compensating valves that adjust the flow rate based on the viscosity of the fluid. This compensation ensures consistent performance across different operating conditions and fluid viscosities. Hydraulic cylinders work in conjunction with these compensation mechanisms to maintain precision and control, regardless of the fluid viscosity.
  3. Temperature Control: Fluid viscosity is highly dependent on temperature. Hydraulic cylinders employ various temperature control mechanisms to address the challenges posed by temperature-induced viscosity changes. Heat exchangers, coolers, and thermostatic valves are commonly used to regulate the temperature of the hydraulic fluid within the system. By controlling the fluid temperature, hydraulic cylinders can maintain the desired viscosity range, ensuring reliable and efficient operation.
  4. Efficient Filtration: Contaminants in hydraulic fluid can affect its viscosity and overall performance. Hydraulic systems incorporate efficient filtration systems to remove particles and impurities from the fluid. Clean fluid with the appropriate viscosity ensures optimal functioning of hydraulic cylinders. Regular maintenance and filter replacements are essential to uphold the desired fluid viscosity and prevent issues related to fluid contamination.
  5. Proper Lubrication: Different fluid viscosities can impact the lubrication properties within hydraulic cylinders. Lubrication is essential for minimizing friction and wear between moving parts. Hydraulic systems employ lubricants specifically formulated for the anticipated fluid viscosity range. Adequate lubrication ensures smooth operation and extends the lifespan of hydraulic cylinders, even in the presence of varying fluid viscosities.

In summary, hydraulic cylinders employ various strategies to handle the challenges associated with different fluid viscosities. By selecting appropriate fluids, incorporating viscosity compensation mechanisms, controlling temperature, implementing efficient filtration, and ensuring proper lubrication, hydraulic cylinders can accommodate variations in fluid viscosity. These measures enable hydraulic systems to deliver consistent performance, precise control, and efficient operation across different fluid viscosity ranges.

hydraulic cylinder

What is a hydraulic cylinder and how does it function in various applications?

A hydraulic cylinder is a mechanical actuator that converts hydraulic energy into linear force and motion. It plays a critical role in various applications where controlled and powerful linear motion is required. Hydraulic cylinders are commonly used in industries such as construction, manufacturing, agriculture, and transportation. Here’s a detailed explanation of what a hydraulic cylinder is and how it functions:

Definition and Components:

– A hydraulic cylinder consists of a cylindrical barrel, a piston, a piston rod, and various seals. The barrel is a hollow tube that houses the piston and allows for fluid flow. The piston divides the cylinder into two chambers: the rod side and the cap side. The piston rod extends from the piston and provides a connection point for external loads. Seals are used to prevent fluid leakage and maintain hydraulic pressure within the cylinder.

Function:

– The function of a hydraulic cylinder is to convert the pressure and flow of hydraulic fluid into linear force and motion. The hydraulic fluid, typically oil, is pressurized and directed into one of the chambers of the cylinder. As the fluid enters the chamber, it applies pressure on the piston, causing it to move in a linear direction. This linear motion of the piston is transferred to the piston rod, creating a pushing or pulling force.

Working Principle:

– The working principle of a hydraulic cylinder is based on Pascal’s law, which states that pressure exerted on a fluid in a confined space is transmitted equally in all directions. In a hydraulic cylinder, when hydraulic fluid is pumped into one side of the cylinder, it creates pressure on the piston. The pressure is transmitted through the fluid to the other side of the piston, resulting in a balanced force across the piston and piston rod. This force generates linear motion in the direction determined by the fluid input.

Applications:

– Hydraulic cylinders find extensive use in a wide range of applications due to their ability to generate high forces and precise control of linear motion. Some common applications include:

1. Construction Equipment: Hydraulic cylinders are used in excavators, loaders, bulldozers, and cranes for lifting, pushing, and digging tasks.

2. Manufacturing Machinery: Hydraulic cylinders are employed in presses, machine tools, and material handling equipment for pressing, clamping, and lifting operations.

3. Agricultural Machinery: Hydraulic cylinders are used in tractors, harvesters, and irrigation systems for tasks like steering, lifting, and controlling attachments.

4. Transportation: Hydraulic cylinders are utilized in vehicles such as dump trucks, garbage trucks, and forklifts for tilting, lifting, and tipping operations.

5. Aerospace and Defense: Hydraulic cylinders are employed in aircraft landing gear, missile systems, and hydraulic actuators for control surfaces.

6. Marine and Offshore: Hydraulic cylinders are used in ship steering systems, cranes, and offshore drilling equipment for various lifting and positioning tasks.

In these applications, hydraulic cylinders offer advantages such as high force capability, precise control, compact size, and durability. They provide efficient and reliable linear motion, contributing to enhanced productivity and functionality in a wide range of industries.

Overall, hydraulic cylinders are integral components in various applications where controlled and powerful linear motion is required. Their ability to convert hydraulic energy into mechanical force makes them invaluable in numerous industries, enabling the operation of heavy machinery, precise positioning, and efficient load handling.

China wholesaler Hydraulic Breaker Spare Parts Cylinder for Furukawa   with Best Sales China wholesaler Hydraulic Breaker Spare Parts Cylinder for Furukawa   with Best Sales
editor by CX 2023-10-30

Lift Cylinder

As one of the lift cylinder manufacturers, suppliers, and exporters of mechanical products, We offer lift cylinders and many other products.

Please get in touch with us for details.

Manufacturer supplier and exporter of lift cylinders.

Recent Posts